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The paper presents the asymptotic solution, near a stationary contact line a t  a plane 
boundary, for steady viscous incompressible flow of two immiscible liquids. The 
eigenvalues which determine this Stokes flow are determined by the contact angle a 
of the more viscous liquid and the ratio ,u of the two viscosities. The dominant 
eigenvalues are found for all values of a and ,u. As ,u + 0 the results agree with those 
of Moffatt's (1964) one-phase theory for the case ,u = 0 only when a > 81". For 
a < 81" the two sets of results are qualitatively different. In  particular, the eddy 
structure corresponding to complex eigenvalues occurs only in the a-range (34", 81"). 
As ,u increases from 0 to 1, this range steadily decreases to zero, which is located a t  
60". The transport of energy across the liquid interface is almost always from the 
obtuse-angled sector to the acute-angled sector, irrespective of a, ,u, and the location 
of the global power supply. 

1. Introduction 
We consider the steady two-dimensional flow of two immiscible viscous liquids in 

the immediate neighbourhood of their common stationary contact line with a plane 
solid boundary. This contact line is taken to be orthogonal to the plane of the flow. 
We assume that the relevant physical properties of both liquids are constant, 
homogeneous, and independent of the flow. In  particular, we assume that the balance 
of surface tensions a t  the contact line implies a well-defined contact angle a, 
where 

which represents the angle of the sector occupied by the more viscous liquid, and that 
a takes its hydrostatic value. The exclusion of the end points from the interval (1.1) 
is it necessary condition for the validity of what follows, since this exclusion makes 
any bounded curvature of the interface a t  the contact line irrelevant to the local 
dynamics of the flow in a sufficiently small domain surrounding the contact line. 
Thus, the usual relation between the discontinuity in normal stress and the curvature 
of the interface becomes irrelevant; as does the orientation of the local flow with 
respect to any external field of force such as gravity. Such matters affect only higher- 
order approximations to the local flow, which become appreciable only a t  some 
distance from the contact line. Asymptotically, therefore, the flow is the same as that 
in which the interface is accurately plane, and an arbitrary distribution of 
discontinuity in normal stress is permissible. 

With this interpretation, the flow configuration and its associated coordinate 
system is that shown in figure 1.  The appropriate local analysis is thus a 

O < o l < X ,  (1.1) 
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FIGURE 1. Orthogonal section of the flow configuration. The contact line 0 is the axis of a system 
of cylindrical polar coordinates ( T ,  #) in which the plane 9 = 0 represents the interface between the 
two liquids. The solid boundary is given by # = -a, # = n - a. 

generalization of that developed by Moffatt (1964), and is another example of a two- 
phase similarity flow (Moffatt & Duffy 1980; Hooper, Duffy & Moffatt 1982). Thus 
we take the stream function $ to be everywhere of the form 

$ = W A r ” + l f ( $ ) ) ,  (1 .2)  

where A and A are (in general complex) constants. 
If the rate of dissipation of total energy in any cylinder of unit span enclosing the 

contact line is to be bounded, which we impose as a condition, then we must have 

Re{h) > 0, (1.3) 

V4$ = 0. (1.4) 

which ensures that $ satisfies the Stokes equation 

The usual kinematic and dynamic boundary conditions for $ are 

f ( - a )  =f(-0) =f’( -a)  = 0;  

f( + O )  =f(7t-a) =f1(7C-a) = 0 ;  

( 1 . 5 ~ )  

(1.5b) 

f’( -0)-f’( + O )  = 0;  

Plf”( - 0) -p2f”( + 0) = 0 ; 

( 1 . 5 ~ )  

(1 .5d)  

where p, and ,us (p l  > p2) are the viscosities of the liquids, and the notations + O  and 
- 0 represent limits as $ --f 0 from above and below, respectively. In the limit r + 0 
no other boundary conditions may be imposed. 

Equations (1 .4)  and (1.5) lead to a standard linear eigenvalue problem of order 
eight, whose characteristic equation is 

7t - a {F(  2ha) - F (  2a))  {F2( An: - ha) - F2( 7T - a)} 
p = !!? = -{--} (F(Sh7t-2ha) -F(27C--2a)){F2(Aa) -F2(a)}’ (1.6) 

P1 
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FIGURE 2. Contours of dominant eigenvalues for acute contact angles: -, Re{h}, 0.1 inter- 
vals; ---, Im{h}, 0.2 intervals. The envelope of the contours of real h is the limiting contour 
Im{A} = 0. 

where 
sin 

F(2) = -. 
2 

For given real values of a and p this equation gives the (generally complex) 
eigenvalues A. As a check on the algebra, note that the solutions of (1.6) are invariant 
under the transformation 

1 

P 
p-t,, a+rc-a’, (1.8) 

as is obviously required by the arbitrariness of the labelling of the two liquids. 

2. The dominant eigenvalues 
For each given pair of values of a and p the characteristic equation (1.6) admits 

an infinite sequence of eigenvalues A.  However, as r --f 0 the dominant eigenfunction 
(1.2) is that whose eigenvalue has the smallest strictly positive real part. Such 
dominant eigenvalues are easily computed from (1.6) by elementary iterative 
methods, provided a reasonably good first approximation is available. The purpose 
of figures 2-4 is to provide such approximations a t  every relevant point of the (a ,  p)- 
plane, and to indicate the general topography of the function h(a,,u). Since ,ul > pz 
it  is necessary to consider only the rectangular domain 

O < p U l ,  o<a<rc.  

In  this domain, the figures show the contour map of Re{h} and, in the subdomain 
where h is complex, the corresponding contour map of Im{h}. 

As figure 2 shows?, the dominant eigenvalues are always real provided a -= a, = 
33.7’. Then, for a, < a < 60°, the eigenvalues remain real only for sufficiently large 

t The contours of real h are taken from Asadullah (1986) 
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FIGURE 3. Contours of dominant eigenvalues in the sensitive domain of figure 2 : -, Re {A}, ( A )  
2.4, ( B )  2.511, (C) 2.6, (D) 2.688; ---, Im{A}, 0.2 intervals; . . . . . . , envelope of real eigenvalues 
where this is not the boundary of dominant real eigenvalues : - .-, boundary of dominant real 
eigenvalues, where this is not the envelope of real eigenvalues. 

D 
a (degrees) 

FIQURE 4. Contours of dominant eigenvalues for obtuse contact angles: Re{h}, 0.1 intervals. 
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values of p, the boundary of this 'real ' domain being the envelope of the contours of 
real A along which the transformation to complex eigenvalues is continuous. 

At a = 60' real eigenvalues are impossible apart from the degenerate case, 

For 60°< a < a2 = 81.3' the dominant eigenvalues are again real only for 
sufficiently large values of p, but the boundary between the 'real' and 'complex' 
domains is here considerably more complicated. For a < 77.5", the boundary remains 
the envelope of the contours of real A ;  but a t  this point (a  = 77.5", p = 0.276, the 
point P in figure 3), the characteristic equation has two distinct roots with the same 
real part. One of them is real ( A  = 2.688), and the other has a non-zero imaginary 
part (Im{A} = 0.767). In  the shaded area of figure 3, it is the analytic continuation 
of this second root which has a smaller real part than the real root, and which 
provides the dominant eigenvalues. Hence there is a new boundary between the 
domains of real and complex eigenvalues, across which the transition is not only 
discontinuous, but from the largest value of Im(A} that is possible for any given 
value of p. This boundary meets the axis p = 0 a t  a = a2 ; and for values of a greater 
than this, the dominant eigenvalues are real for all values of p, as figures 2 4  
show. 

One further property of the general topography may be noted. The contour 
Re { A }  = 2.688, which produces the two distinct roots a t  the point P ,  is a closed curve. 
Within this closed curve, still larger values of Re {A} are dominant until the contours 
degenerate to a point at a = 75.9', p = 0.293. At this last point, Re{A} = 2.716, 
which is the largest dominant value in the whole (a,p)-plane. 

p =  1, A = 2 .  

3. The case of small viscosity ratio 
The earlier work of Dean & Montagnon (1949) and Moffatt (1964) for one-phase 

flows may be regarded as the limit p = 0, and their results may be compared with the 
appropriate limiting form of the present results. Since the analysis requires inertia 
forces to be negligible in both liquids, it is necessary to regard the limit p -+ 0 in the 
following form: p1 + co for a fixed value of p2. Otherwise the domain of validity of 
the similarity solution shrinks to zero. 

3.1. The dominant eigenvalues 
When p = 0 the results are more conveniently represented in the form shown in 
figure 5. Two entirely separate sequences of roots of the characteristic equation (1.6) 
are involved. For a > a2 the dominant root is the dominant root of 

P(2Aa) -F(2a) = 0. (3.1) 

In  the one-phase theory presented by Moffatt (1964), (3.1) is the complete 
characteristic equation. Hence, in this range, the two theories are necessarily in 
complete agreement. 

When a < a2, however, the dominant root of (1.6) is the dominant root of 

F(An-Aa)+F(n-a) = 0. (3.2) 

At the transition point a2 the roots of (3.2) are complex and do not become real until 
a has decreased to the branch point al. Throughout the range a < u2, therefore, the 
limit of the two-phase theory as p + 0 is different from Moffatt's one-phase theory a t  
p = 0, and the two theories yield qualitatively different results. 
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Figure 5. Dominant eigenvalues as y + 0. 

As Moffatt (1964) has pointed out, the physical manifestation of a complex 
eigenvalue is an infinite sequence of eddies whose linear size increases linearly with 
the distance r from the contact line. In  the present results, such a structure does not 
occur for a < al, and as a increases beyond this range the size of the eddy which 
contains a fixed value of r steadily decreases from infinity to its value at a2, a t  which 
value the eddy structure suddenly disappears. In Moffatt’s results, as a increases 
from zero, the same eddy size steadily increases from zero to infinity a t  a particular 
value of a, a t  which the solution represents an eddy-free flow. The physical 
mechanism underlying this difference is discussed in $3.2. 

Although the two theories yield different a-ranges for an eddy structure, they both 
produce rather large values (3900 herein; 5000 in Moffatt) for the minimum ratio of 
the velocity scales in two successive eddies, Such values raise doubts about whether 
an eddy zone could ever be observed in a form different from a zone of general 
stagnation. 

3.2. The two modes of flow 
As p+O the distinction between the two relevant sequences of eigenvalues is most 
easily characterized in terms of the mechanical conditions a t  the interface. When 
a > a2, so that the dominant eigenvalues are solutions of (3.1), the equations show 
that f”( -0) vanishes, whereas f’( -0) remains of order unity. They also show that 
neither f ” (  + 0) nor f ’ (  + 0) vanishes ; the unbounded ratio f ” (  + O ) / f ” (  - 0) being 
supported by the vanishing ratio p. It follows that the velocities in the two liquids 
are, at any given value of r ,  of comparable order of magnitude, and that this scale 
is represented by the velocity a t  the interface. This mode of flow may therefore 
reasonably be termed the velocity mode, and is the one discussed by Moffatt 
(1964). 

When a < a2 the effect of the mechanical balance is different. Here, the dominant 
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eigenvalues are solutions of (3.2), andf”( -O) ,  f’( -0) andf’( +0) all vanish, whereas 
f”( + 0) does not, the unbounded ratio again being supported by zero p. It follows 
that the more viscous liquid is virtually a t  rest, and that it is the stresses, not the 
velocities, that are of comparable magnitude in the two liquids. This mode of flow 
may therefore reasonably be termed the stress mode. In the stress mode, the flow of 
the less viscous liquid must be that of flow between two solid boundaries, one of 
which is the natural solid boundary and the other is the interface. 

In  confirmation of this interpretation of the stress mode, we note that (3.2) is the 
characteristic equation obtained by Dean & Montagnon (1949), as well as by Moffatt 
(1964), for antisymmetric flow ofa  single fluid between solid boundaries. These same 
authors also discuss the corresponding case of symmetric flow, for which the 
characteristic equation is 

While it is true that (3.3) is a third limiting form of the full characteristic equation 
(1.6) as p+0,  this form is not normally relevant to the two-phase theory, since the 
dominant eigenvalue of the sequence is in turn dominated, for every value of a, by 
the dominant eigenvalue of one of the other two sequences. Clearly, it is the principle 
of global dominance in the two-phase theory which leads not only to the irrelevance 
of (3.3), but to the existence of the critical angle a2 which marks the discontinuous 
transition between (3.1) and (3.2). Fortuitously the value of a2 (81’) lies within 2’ of 
another critical angle (79”) obtained by Moffatt (1964)t : namely the branch point a t  
which the solutions of (3.1) change continuously from real to complex values. It is 
this small difference that leads to the narrowness of the shaded region of figure 3, 
where it appears that Moffatt’s angle is not relevant to the two-phase problem. 

F(hn-ha)-F(n-a) = 0. (3.3) 

3.3. Transport of energy across the interface 

An interesting aspect of the flow as p+0 concerns the rate of viscous transport of 
energy across unit area of the interface, E ,  from the more viscous to the less viscous 
liquid. For non-zero values of p,  however small, E does not vanish, and its sign 
becomes a matter of legitimate investigation. When h is real, it is a simple matter to 
show that E is negative for a < $n, and positive for a > in. When h is complex, which 
occurs only for acute values of a, the calculation is more awkward since E is an 
oscillatory function of position along the interface. However, if we adopt the 
geometrically natural definition of a single eddy as any portion of the flow which is 
bounded by the streamline $ = 0, so that its interfacial boundary lies between two 
stagnation points, then the sign of 

E = [  Edr 

again measures, in an average sense, the direction of energy transport. The numerical 
solutions of the characteristic equation then show that E is also always negative, 
except for a very small subdomain of the (a, p)-plane which is almost the same as the 
shaded area of figure 3. 

It appears, then, that the transport of energy across the interface is almost always 
from the obtuse-angled sector to the acute-angled sector, irrespective of the 
mechanical properties of the two liquids. This result has an interesting implication 
for any global flow in which the ultimate source of energy resides in a liquid whose 

t The value quoted is the corrected value (79.5’) given by Moffatt & Duffy (1980), in agreement 

one eddy 

with figure 3. 
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contact angle is acute. Apparently, over much of the interface this liquid must set the 
other liquid in motion, but, near a contact line, it is the latter which must drive the 
former liquid. 

4. Conclusion 
It remains to consider the domain of validity of the local similarity solution (1.2) 

in a practical flow configuration. The essential constraint is that both the solid 
boundary and the liquid interface should be approximately plane throughout this 
domain. If the theory is to be valid right up to the contact line, as ideally it should, 
then the plane interface must also be the tangent plane at the contact line. 

Now it is always possible, by adjusting the inclination of a flat plate which 
intersects the interface between two liquids in a reservoir, to make this tangent plane 
horizontal on one side of the plate for any given contact angle of the liquids. If the 
system were a t  rest, and the density ratio not very close to unity, gravitational forces 
would then ensure that the interface would remain almost plane over a substantial 
domain. For sufficiently small velocities in an induced motion it then seems 
reasonable to suppose that the departure of the interface from its hydrostatic 
position can be kept as small as is desired. In  such a flow configuration the domain 
of validity of the local similarity solution a t  the contact line is enhanced, by orders 
of magnitude, from that otherwise would be the case. Indeed, the only limitation is 
the global lengthscale of the reservoir and plate, which must be large compared with 
the domain of validity. It may even be, as was perhaps implied by Moffatt (1964), 
that a matching of the inclination of the plate to the contact angle may be 
unnecessary in some cases, on the grounds that a small region near the contact line, 
whose linear dimensions are comparable with the small radius of curvature of a 
meniscus, will not significantly affect the flow in a wedge of much larger extent. 

With such an arrangement of the boundaries, it might well be possible to observe 
critical properties of the flow of two liquids with very different viscosities, which 
would discriminate between the present results and those of Moffatt (1964). Perhaps 
the most interesting, and somewhat surprising, difference between the theories lies in 
our conclusion that Moffatt's results for free-surface flows when p = 0 cannot 
represent the limiting flow as p + 0 when the contact angle of the more viscous liquid 
is less than 81". In  particular, Moffatt's corner eddies cannot appear when this 
contact angle is less than 34". Some aspects of this marked qualitative difference 
might be observable in the motion of the less viscous liquid. 

Further, the present results show that the qualitative properties of the flow as 
p + 0 are not sensitive to the value of p. As p increases from 0 to  0.276 (the point P 
in figure 3), there remain two distinct modes of flow, and all their qualitative 
properties remain the same as those for p + 0. The only significant changes are in the 
critical angles (al, a,) a t  which the main transitions take place. The requirement that 
the viscosity ratio ,u be small may thus be interpreted very loosely. 

One of us (M. A.) is grateful to the Government of Pakistan and to the University 
of Engineering & Technology, Peshawar, for financial support during the course of 
this work. 
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